Some related links¶

Jean Garrigues courses (in french)¶

http://jgarrigues.perso.egim-mrs.fr/ef.html

Internet Finite Element Resources¶

http://homepage.usask.ca/~ijm451/finite/fe_resources

MUMPS: a MUltifrontal Massively Parallel sparse direct Solver¶

http://graal.ens-lyon.fr/MUMPS/ or http://mumps.enseeiht.fr/

SuperLu: Sparse Gaussian Elimination on High Performance Computers¶

http://crd.lbl.gov/~xiaoye/SuperLU/ or http://www.cs.berkeley.edu/~demmel/SuperLU.html

Some project using GetFEM and/or Gmm++¶

  • IceTools: an open source model for glaciers.
  • EChem++: A Problem Solving Environment for Electochemistry.
  • SimNIBS: a software for the Simulation of Non-invasive Brain Stimulation.

Examples of publications based on GetFEM¶

  • Andreykiv A. and Rixen D.J., Numerical modelling of electromechanical coupling using fictitious domain and level set methods. Int. J. Numer. Meth. Engng 2009. www3.interscience.wiley.com.
  • Chouly F., Mlika R. and Renard Y.. An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comp. Meth. Appl. Mech. Engng., 325:265–288, 2017. hal.archives-ouvertes.fr.
  • Fabre M., Pousin J. and Renard Y. A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method. SMAI J. of Comput. Math., 2:19–50, 2016. hal.archives-ouvertes.fr.
  • Poulios K., Renard Y. An unconstrained integral approximation of large sliding frictional contact between deformable solids. Computers and Structures, 153:75–90, 2015. hal.archives-ouvertes.fr.
  • Poulios K., Niordson C.F., Homogenization of long fiber reinforced composites including fiber bending effects, Journal of the Mechanics and Physics of Solids, 94, 433-452, 2016. orbit.dtu.dk.
  • Lozinguez E., Barthélémy J.-F., Bouteiller V. and Desbois T., Contribution of Sacrificial Anode in reinforced concrete patch repair: Results of numerical simulations. Construction and Building Materials, 178 (2018) 405–417. sciencedirect.com.
  • Vtorushin E.V., Application of mixed finite element to spatially non-local model of inelastic deformations. Int. J. Geomath. 2016. link.springer.com.
  • Windhoff M., Opitz A., and Thielscher A., Electric Field Calculations in Brain Stimulation Based on Finite Elements: An Optimized Processing Pipeline for the Generation and Usage of Accurate Individual Head Models. Human Brain Mapping, 34(4), 923-35, 2013. DOI: 10.1002/hbm.21479. onlinelibrary.wiley.com.

An evaluation of Gmm++ performance¶

Benchmark of C++ Libraries for Sparse Matrix Computation.

Logo

GetFEM

Navigation

  • User Documentation
  • GetFEM Tutorial
  • Description of the Project
  • Gmm++ Library
  • Octave and MatLab Interfaces
  • Python Interface
  • SciLab Interface
  • How to install from sources on Linux
  • How to use docker images of python interface
  • How to install from sources on MacOS X
  • How to install GetFEM from sources on Windows
  • What’s New in GetFEM
  • Documenting
  • Glossary
  • About these documents
  • Reporting Bugs in GetFEM
  • Legal information
  • History and License
  • Some related links
    • Jean Garrigues courses (in french)
    • Internet Finite Element Resources
    • MUMPS: a MUltifrontal Massively Parallel sparse direct Solver
    • SuperLu: Sparse Gaussian Elimination on High Performance Computers
    • Some project using GetFEM and/or Gmm++
    • Examples of publications based on GetFEM
    • An evaluation of Gmm++ performance
  • GetFEM Mailing Lists
  • GetFEM in action …
  • Matlab source code for the tripod
  • Matlab source code for the Stokes equation example
  • Matlab source code for the Helmholtz equation example

Related Topics

  • Documentation overview
    • Previous: History and License
    • Next: GetFEM Mailing Lists

Quick search

© Copyright 2004-2020 GetFEM project.